Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media

نویسندگان

  • J. E. P. Monteagudo
  • A. Firoozabadi
چکیده

[1] We provide a numerical procedure for the simulation of two-phase immiscible and incompressible flow in twoand three-dimensional discrete-fractured media. The concept of cross-flow equilibrium is used to reduce the fracture dimension from n to (n-1) in the calculation of flow in the fractures. This concept, which is often referred to as the discrete-fracture model, has a significant effect on the reduction of computational time. The spatial discretization is performed with the control-volume method. This method is locally conservative and allows the use of unstructured grids to represent complex geometries, such as discrete-fracture configurations. The relative permeability is upwinded with a criterion based on the evaluation of the flux direction at the boundaries of the control volumes, which is consistent with the physics of fluid flow. The system of partial differential equations is decoupled and solved using the implicit-pressure, explicitsaturation (IMPES) approach. The algorithm has been successfully tested in twoand three-dimensional numerical simulations of wetting phase fluid injection (such as water) in discrete-fractured media saturated by a nonwetting phase (such as nonaqueous phase liquid or oil) with mild to high nonlinearity in relative permeability and capillary pressure. To the best of our knowledge, results for simulations of two-phase immiscible and incompressible flow in three-dimensional discrete-fractured media, including capillary and gravity effects, are the first to appear in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method

n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...

متن کامل

Development of a phase change model for volume-of-fluid method in OpenFOAM

In this present study, volume of fluid method in OpenFOAM open source CFD package will be extended to consider phase change phenomena with modified model due to condensation and boiling processes. This model is suitable for the case in which both unsaturated phase and saturated phase are present and for beginning boiling and condensation process needn't initial interface. Both phases (liquid-va...

متن کامل

A new conforming mesh generator for three-dimensional discrete fracture networks

Nowadays, numerical modelings play a key role in analyzing hydraulic problems in fractured rock media. The discrete fracture network model is one of the most used numerical models to simulate the geometrical structure of a rock-mass. In such media, discontinuities are considered as discrete paths for fluid flow through the rock-mass while its matrix is assumed impermeable. There are two main pa...

متن کامل

Three-dimensional numerical simulation of temperature and flow fields in a Czochralski growth of germanium

For a Czochralski growth of Ge crystal, thermal fields have been analysed numerically using the three-dimensional finite volume method (FLUENT package). The arrangement used in a real Czochralski crystal growth lab included a graphite crucible, heat shield, heating device, thermal insulation and chamber including two gas outlets. We have considered two cases for calculations, which are configur...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004